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Background

It focuses on detecting words which users 

choose in continues speech.
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• Keyword Spotting

• Keyword Search

• Spoken Term Detection



Voice-controlled devices

• Voice-controlled devices 

active in terms of users’ 

command words.

• A device activated when it 

receives some wake-up 

words.
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Typical application scenarios
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Searching keywords in audio

• For example, we have 

several hours of audio or 

video lectures.

• We are interested in some 

specific audio or video clips.

• We would like to retrieve the 

entire audio or video 

document in terms of some 

keywords.
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Typical application scenarios
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Two different problems

• Keyword spotting

– Keywords are usually fixed

– Small-footprint

– Efficient computation

– Low-power consumption

• Spoken term detection (Keyword search)

– Keywords are changeable

– Need to locate the keywords in audio

– Out-of-vocabulary
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Filler Models

• The filler models are sometimes known as 

garbage models or acoustic keyword spotting.

• This model can be seen as a framewise 

sequence labelling problem. 

• Keywords and non-keywords are modeled 

respectively in this approach.

• Filler models are a set of models which can 

match arbitrary non-keyword speech 

utterances.
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• Each keyword and a 
filler are modeled using 
HMM respectively.

• Generative probability of 
a frame of speech 
parameters given a 
state of HMMs is 
estimated with GMMs or 
DNNs.
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HMM based filler models

Wilpon J G, Lee C, Rabiner L R, et al. Application of hidden Markov models for recognition of a limited set of 

words in unconstrained speech[C]. international conference on acoustics, speech, and signal processing, 

1989: 254-257.
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• Each phone is modeled 

by an HMM model.

• Searching Graph is built 

with a handcraft phone-

level grammar. 
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HMM based filler models

Sun M, Snyder D, Gao Y, et al. Compressed Time Delay Neural Network for Small-Footprint Keyword 

Spotting.[C]. conference of the international speech communication association, 2017: 3607-3611.
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DNN based filler models

• DNN is used as a framewise classifier.

• Then the posteriors are smoothed with a 

window.

• The system is used in mobile devices.
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Chen G, Parada C, Heigold G, et al. Small-footprint keyword spotting using deep neural networks[C]. 

international conference on acoustics, speech, and signal processing, 2014: 4087-4091.
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Query-by-example methods

• Query-by-example is a task to detect 
some keywords in a speech signal, where 
the keywords are saved as patterns. 

• Query-by-example methods allow users 
define their own keywords. It is more 
personalized for them to control their own 
devices. 
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Query-by-example methods

• DTW Based Methods

– Extended from isolated word speech 

recognition.

– The main difference is that the query is a 

word and the reference may be a longer 

sentence.

• Embedding Learning Based Method

– Represent speech sequence of arbitrary 

length as a fixed-dimensional vector are 

used in KWS.
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DTW Based Methods

• Compute similarity between two 

sequences of vectors.

• Two stages:

– Convert the queries and target speech into 

same representations using acoustic models.

– Compute confidence of appearance of the 

keywords to decide whether the keywords 

appear in speech stream. 
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Itakura F. Minimum prediction residual principle applied to speech recognition[J]. IEEE Transactions on 

Acoustics, Speech, and Signal Processing, 1975, 23(1): 154-158.

Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE 

Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 159-165.



Formally

Given two sequences 

Consider 

The matching pattern is a 
sequence of points

The time-normalized 
distance is defined as
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DTW Based Methods
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Five constraints:

a) Monotonicity

b) Continuity

c) Boundary

d) Adjustment window

e) Slope constraint
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DTW Based Methods
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DTW Based Methods

• Several variants of DTW for KWS

– Segmental DTW

– Segmented DTW

– Non-segmental DTW

– Subsequence DTW

– Segmental local normalized DTW
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Mantena G V, Achanta S, Prahallad K, et al. Query-by-example spoken term detection using frequency 

domain linear prediction and non-segmental dynamic time warping[J]. IEEE Transactions on Audio, 

Speech, and Language Processing, 2014, 22(5): 946-955.

Zhang Y, Glass J R. Unsupervised spoken keyword spotting via segmental DTW on Gaussian 

posteriorgrams[C]. ieee automatic speech recognition and understanding workshop, 2009: 398-403.



Segmental DTW
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Segmental local normalized DTW

• Time complexity of SLN-DTW is O(mnd)
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Feature representations 

and distance computation

• Main feature representations

– Acoustic parameters (MFCC, FBANK)

– Posteriorgram (GMM, DNN)

– Bottleneck feature (DNN, Autoencoder)

• Distance computation

– Compute similarity at each DTW step

– Euclid distance

– −log(𝒙 · 𝒚)

– 1 −
𝒙·𝒚

|𝒙||𝒚|
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Some drawbacks of DTW

• Comparing two sequences using DTW 

based methods costs polynomial time.

• DTW is often oversensitive to longer 

phonetic segments. 
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Embedding Learning Based Method

• General ideas of non-DTW methods are based 

on to construct a fixed-dimensional vector to 

represent a speech segment of arbitrary length. 

• In this case, common distances such as Euclid 

or cosine can be used to measure similarity 

between two sequences.
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• Audio is preprocessed by a 

voice activity detection system.

• For speech regions, 40-

dimensional mel-filterbank

features are generated.

• 15k output targets represent 

whole word units.

• A fixed-length representation 𝒇
is created by choosing the last 

𝒌 state vectors.
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Embedding learning using LSTM

Chen G, Parada C, Sainath T N, et al. Query-by-example keyword spotting using long short-

term memory networks[C]. international conference on acoustics, speech, and signal 

processing, 2015: 5236-5240.
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• Weakly supervised: the transcripts of 

training data and testing data are unknown.
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Siamese networks based on CNN

Kamper H, Wang W, Livescu K, et al. Deep convolutional acoustic word embeddings using word-pair side 

information[J]. international conference on acoustics, speech, and signal processing, 2016: 4950-4954.
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LVCSR based methods
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Speech

Recognition Index



LVCSR based methods

• The recognition results of LVCSR may 

contain errors, which will hurt the 

keyword spotting effect. 

• How to index raw result of ASR?

– Location of each word

– Lattice
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Prerequisite: WFST

• Weighted Finite State Transducer (WFST) 

is a graph.
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Prerequisite: WFST

• It can be used to map a sequence to 

another, e.g., bcc to xxz.
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Prerequisite: WFST

• A WFST can also be used to represent a 

string.
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Prerequisite: WFST

• Composition is an operation of WFST.

– T1: A to B

– T2: B to C

– T1 * T2: A to C
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Prerequisite: WFST

• Union is also an operation of WFST.
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Prerequisite: Lattice

• A lattice is a compact representation of 

ASR results. 
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Prerequisite: Factor Automata

• v is a factor of u if u=xvy, where u,x,v,y is 

strings.

• A Factor Automaton F(u) of a string u is 

an automaton which can recognize 

factors of u.
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Timed Factor Transducer

• A TFT is a WFST mapping each factor x:

– the set of automata in which x appears;

– start-end times of the intervals where appears 

in each automaton;

– the posterior probabilities of actually occurring 

in each automaton.
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Can D, Saraclar M. Lattice Indexing for Spoken Term Detection[J]. IEEE Transactions on Audio, 

Speech, and Language Processing, 2011, 19(8): 2338-2347.



TFT for Lattice Indexing

• Indexing

– Convert lattices to TFTs

– Union

– Optimize
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TFT for Lattice Indexing

• Searching

– Convert query to a linear acceptor X

– Compose X and T: R

– Each successful path in R is a single arc, 

the label is the automaton id, and a (LogP, 

start-time, end-time) triplet.

38



OOV problem

• The out-of-vocabulary problem is more 

important in KWS than in ASR.

• Users often would like to search names 

or new words which are out-of-

vocabulary.

• A basic approach to tackle OOV problem 

is using sub-word units such as phones 

or syllables as results of the LVCSR 

system.
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Proxy word:

a unified process method

• Proxy words are IV keywords which are 

acoustically similar as OOV keywords.

• In spotting stage, proxy words are 

searched in the index instead of original 

out-of-vocabulary query.

40

Chen G, Yilmaz O, Trmal J, et al. Using proxies for OOV keywords in the keyword search task[C]. 

ieee automatic speech recognition and understanding workshop, 2013: 416-421.



Proxy words generation

• Proxy words are generated based on WFST.

• where 𝐾 is a FSA for an OOV word;

• 𝐿2 is a FST for pronunciation of the OOV 

word; 

• 𝐸 is an edit-distance transducer;

• 𝐿1 denote the pronunciation lexicon of 

LVCSR.

• 𝐾′ is a FSA corresponding to proxy words. 
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• The phone confusion 

matrix is generated 

using maximum 

likelihood estimation.

• The pronunciations of 

the words are obtained 

using G2P software.

42

Phone confusion matrix estimation
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Model Compression

• Alexa

44

Sun M, Snyder D, Gao Y, et al. Compressed Time Delay Neural Network for Small-Footprint Keyword 

Spotting.[C]. conference of the international speech communication association, 2017: 3607-3611.



Model Compression
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Sun M, Snyder D, Gao Y, et al. Compressed Time Delay Neural Network for Small-Footprint Keyword 

Spotting.[C]. conference of the international speech communication association, 2017: 3607-3611.



Compute similarities between 

heterogeneous patterns

46

Audhkhasi K, Rosenberg A, Sethy A, et al. End-to-end ASR-free keyword search from speech[J]. 

IEEE Journal of Selected Topics in Signal Processing, 2017, 11(8): 1351-1359.



Similarity Image Classification 

For Query-by-Example KWS

47

Ram D, Miculicich L, Bourlard H. CNN based query by example spoken term detection[C]//Proceedings of the 

Nineteenth Annual Conference of the International Speech Communication Association (INTERSPEECH). 2018.



Streaming Seq2Seq Models for KWS

48

He Y, Prabhavalkar R, Rao K, et al. Streaming small-footprint keyword spotting using sequence-to-sequence 

models[C]//Automatic Speech Recognition and Understanding Workshop (ASRU), 2017 IEEE



Streaming Seq2Seq Models for KWS
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He Y, Prabhavalkar R, Rao K, et al. Streaming small-footprint keyword spotting using sequence-to-sequence 

models[C]//Automatic Speech Recognition and Understanding Workshop (ASRU), 2017 IEEE

is one-hot encodings 

of M+1 phonemes of 

a keyword.



Streaming Seq2Seq Models for KWS
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He Y, Prabhavalkar R, Rao K, et al. Streaming small-footprint keyword spotting using sequence-to-sequence 

models[C]//Automatic Speech Recognition and Understanding Workshop (ASRU), 2017 IEEE



Streaming Seq2Seq Models for KWS
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He Y, Prabhavalkar R, Rao K, et al. Streaming small-footprint keyword spotting using sequence-to-sequence 

models[C]//Automatic Speech Recognition and Understanding Workshop (ASRU), 2017 IEEE
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Take Home Messages

• Keyword spotting focuses on detecting 

keywords in computation constrained 

conditions.

• The out-of-vocabulary keywords are 

problems of spoken term detection.
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Thank you!
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